Though astronomers have known about neutron stars for decades, no one had actually seen one of these objects being formed before. The hunt for a neutron star within this close supernova remnant has been regarded as a holy grail quest.
“With this observatory, we have now found direct evidence for emission triggered by the newborn compact object, most likely a neutron star,” said Claes Fransson of Stockholm University, the lead author of the study, in a statement released by NASA.
Scientists first saw this stellar explosion — dubbed SN 1987A — with the naked eye nearly 40 years ago in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way about 160,000 light-years away. Since then, they’ve investigated it at radio, gamma-ray, and X-ray wavelengths — searching for clues among the ashes for what came of the deceased star.
This dispersal seeds new generations of stars and planets, but scientists admit they have much to learn about the early stages of the process.
Credit: NASA / ESA / CSA / STScI / Claes Fransson / Mikako Matsuura / M. Barlow / Patrick Kavanagh / Josefin Larsson
Webb, the leading infrared telescope, was finally able to “see” what other telescopes couldn’t in the aftermath. The new study, published this week in the journal Science, found evidence of heavily ionized argon (meaning argon atoms that had become electrically charged) in the center of the exploded material. Researchers think the most likely explanation for the changed argon is ionizing radiation from a neutron star.
“To create these ions that we observed in the ejecta, it was clear that there had to be a source of high-energy radiation in the center of the SN 1987A remnant,” Fransson said in a statement. “Only a few scenarios are likely, and all of these involve a newly born neutron star.”
Solving this mystery may help scientists better understand how stellar corpses evolve over time.
Topics
NASA